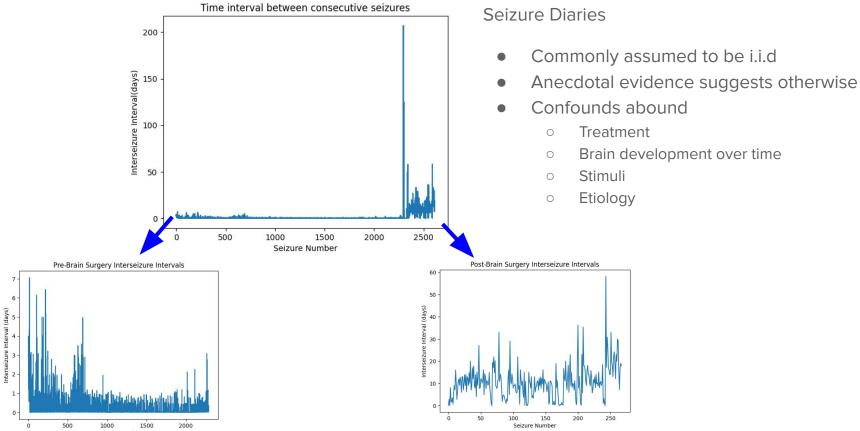
Modeling Seizure Data

Andrew Isaacson, Ajax Benander, Xiangyi Chen, Wentao Jiang, Jennifer Kim, Svetlana Pack, Yining Qian, Scott Sun, Gus Vietze, Matthew Xie, Jonathan Zhang

Background



Characterising the Data

Random Shuffle- Past Results

Null Hypothesis tested:

The data is generated from a IID distribution (no time dependent structure)

Discriminating Statistic- Mutual Information :

 $H(X_t) + H(X_{t+\tau}) - H(X_t, X_{t+\tau})$

Conclusion: both pre and postsurgery datasets are quite statistically significantly unlikely to have been generated by IID processes

Methodology:

- Create n surrogates by scrambling the order of the data, destroying any time dependence
- Find the mean and variance of mutual information between time lagged surrogate time series
- Perform t test on the mutual information of the original time series, accept or reject null hypothesis

RESULTS:

	MI _{actual}	μ _{surrogat} e	$\sigma^2_{surrogate}$	z score	<i>p</i> -value
Before Surgery	0.013	0.053	0.000007	14.354	0.0
After Surgery	0.146	0.305	0.002	3.391	0.0003

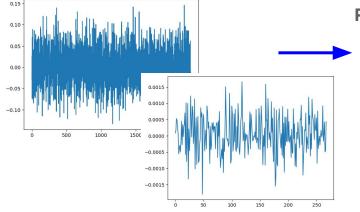
Random Phases

Null Hypothesis Tested:

The time dependency in the data is explained exclusively by the autocorrelation function.

Surrogate Data:

- Generate *n* surrogates of ISI_1 and ISI_2 by Fourier Transform. Surrogates preserve autocorrelation but randomize phases.
- Find the mean and variance of the mutual informations generated for all *n* surrogates
- By CLT, compare this mean and variance with the mutual information for the actual data to check for statistical significance



Results:

	MI _{actual}	$\mu_{surrogate}$	$\sigma^2_{surrogate}$	z score	<i>p</i> -value
Before Surgery	0.0528	0.0412	0.008	1.509	0.131
After Surgery	0.3053	0.304	0.063	0.028	0.978

FORECASTING

Classical Time Series Forecasting methods: Hazard Function Modeling

HAZARD FUNCTION (λ):

The PDF when the CDF is zero.

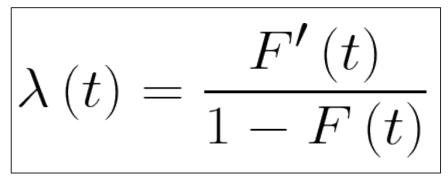
Probability of Hazard Function Matching Data

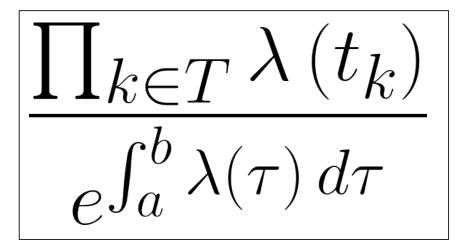
<u>ALGORITHM</u>

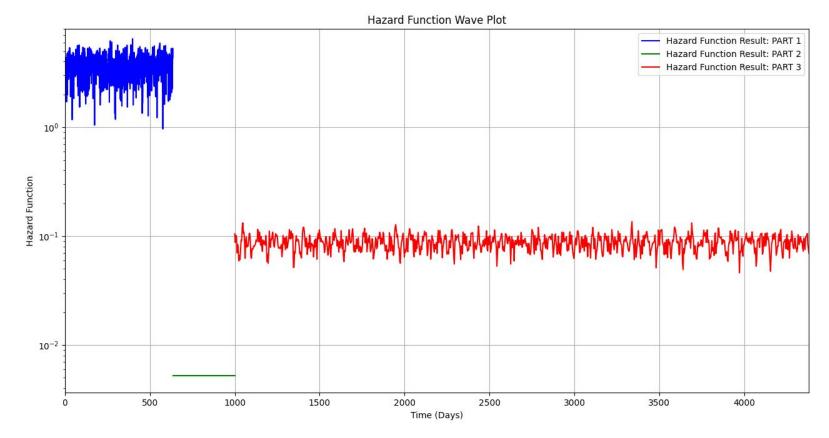
Sum eight waves with different preset parameters to create the hazard function, and then use machine learning to change those parameters until the probability of matching the data is maximized.

- Technically, any hazard function can match any data of event timecodes
- However:
 - We can measure **the probability** of a hazard function matching a dataset
 - Always infinitesimal
 - Divide by *dt* to create a nonzero proportionality scale
- Final step is to find the optimal hazard function aka the highest fit probability

$$\prod_{k \in T[1:]} \lambda\left(t_k\right) \, e^{-\int_{t_{k-1}}^{t_k} \lambda(\tau) d\tau}$$







Final Approach Visual Results: ALL (Log Plot)

Hazard Function Interpretation

MEAN AND STANDARD DEVIATIONS OF HAZARD FUNCTIONS

- Before Surgery (Span: 635 days)
 - Mean: 3.583 per day
 - Standard Deviation: 0.8957 per day
- Directly After Surgery (Span: 365 days)
 - Mean: 0.005222 per day
- Well After Surgery (Span: 3382 days)
 - Mean: 0.08776 per day
 - Standard Deviation: 0.01407 per day

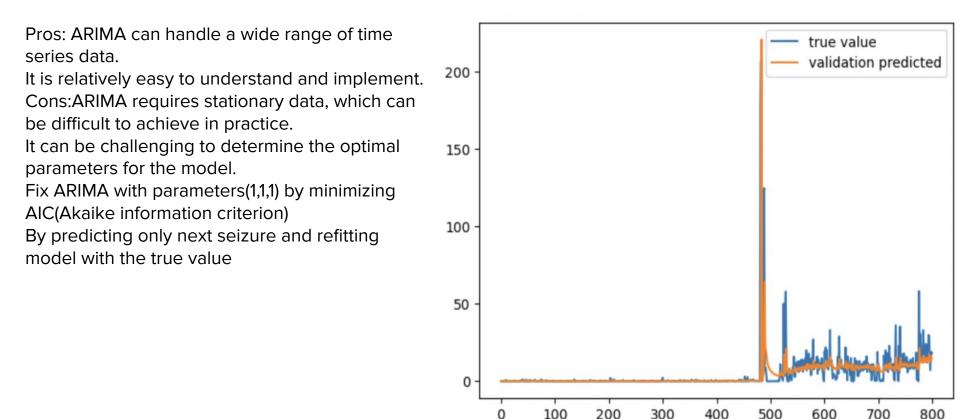
PERIODICITY OF HAZARD FUNCTIONS

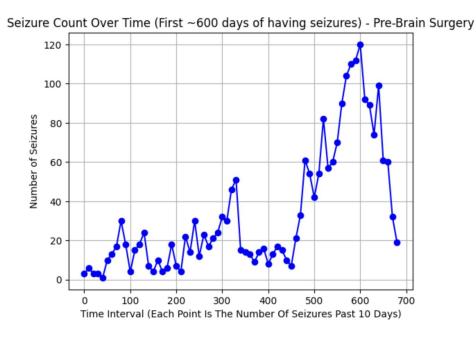
- Before Surgery
 - ~15 full waves per 635 days
 - Wave Period ≈ 42 days
 - Wave Frequency ≈ 8.62 per year
 - "Amplitude" (But Really Standard Deviation)
 - High "Bound"
 - ~4.48 seizures per day
 - Low "Bound"
 - ~2.69 seizures per day
- Directly After Surgery
 - → Not Enough Data ←
- Well After Surgery
 - Less variance leads to higher uncertainty for wave patterns

Classical Time Series Forecasting methods: ARIMA and Fourier Methods

ARIMA model

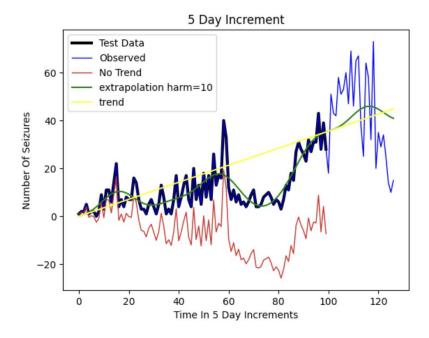
Result





Pro

- Obvious trend
- Possible seasonality



Con

- Limited testing
- Limited understanding of fourier transform

Machine Learning Approaches: Feedforward vs. LSTM

Pre-Processing techniques

Processed data through different functions on pre- and post-surgery data:

- Differences between data points
- Taking the cosine of each point
- Taking the sine of each point
- Combination between above methods

Why pre-process?

• Pre-processing can create patterns from a seemingly random dataset-allowing for better predictions using machine learning.

New modified data is plugged into the Feed Forward neural network

Process of pre-processing

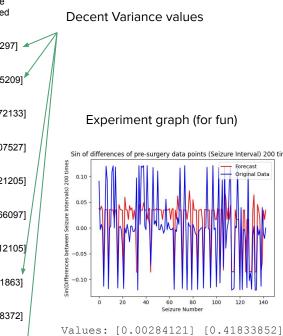
Goal:

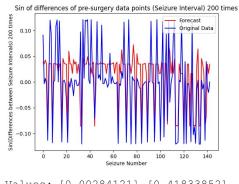
- Obtain low error
- Obtain high variance-best is value of 1 or 100%

The error and variance explained is calculated using the difference between predicted and observed values

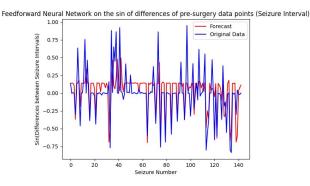
Data results for some alterations to the data

Method of alteration of data	Error	Variance Explained
Difference between data points Pre-surgery	[0.14028879]	[0.0574297] 🔺
Difference between data points Post-surgery	[167.81034534]	[0.08865209]
Sin of data points pre-surgery	[0.05910263]	[-0.01272133]
Sin of data points post-surgery	[0.54061466]	[-2.91507527]
Cos of data points pre-surgery	[0.01502062]	[-0.22021205]
Cos of data points post-surgery	[0.73507212]	[-0.80966097]
Sin of two times the data point pre-surgery	[0.01834313]	[-0.04512105]
Sin of two times the data point post-surgery	[0.46963754]	[0.06791863]
Sin of four times the data point pre-surgery	[0.10920532]	[0.02678372]
Cos of the differences pre surgery	[0.03696392]	[0.05566345]
Sin of the differences pre surgery	[0.07138248]	[0.33136832]

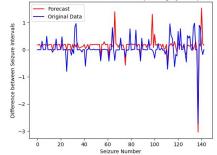




Best two graphs out of the methods tried



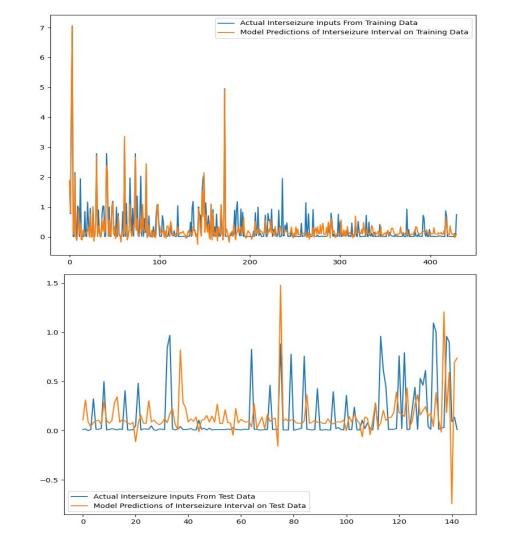
Feedforward Neural Network on the difference between pre-surgery data points (Seizure Interval)



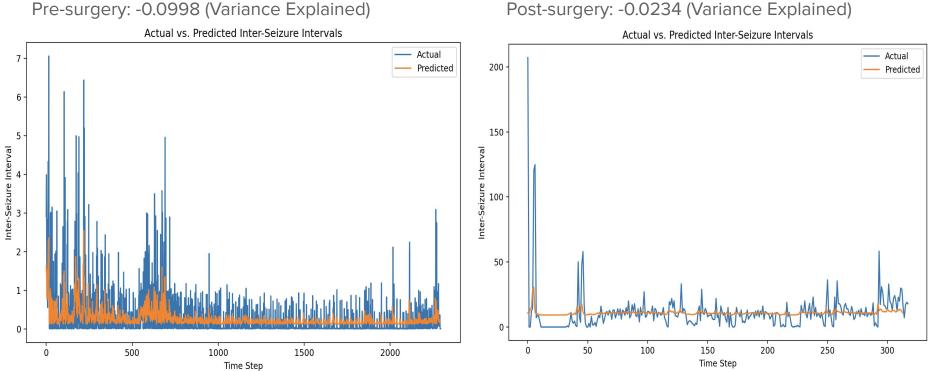
ML Modeling Attempts

- LSTM

- Too powerful of a model for the data, overfitted to the noise which bore out in poor performance in cross validated data
- Some recurrent structure was detected which led us to opt for a LSTM model
- 51% variance explained suggests some promise but the model needs to be finely tuned and scaled down



LSTM - CNN

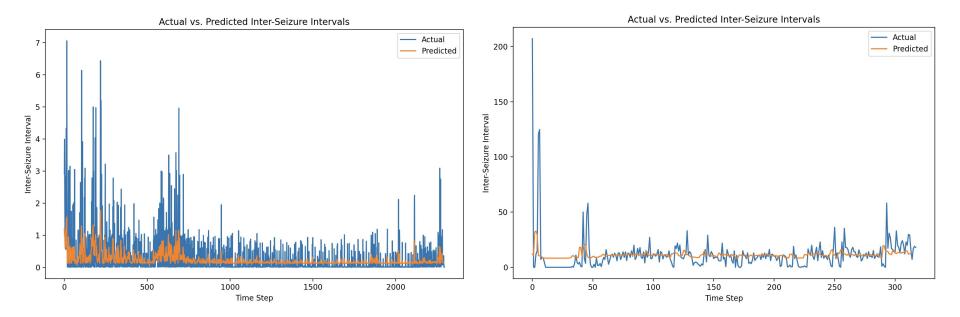


Post-surgery: -0.0234 (Variance Explained)

CNN - LSTM

Pre-surgery: -0.116 (Variance Explained)

Post-surgery: -0.00648 (Variance Explained)



Future Directions

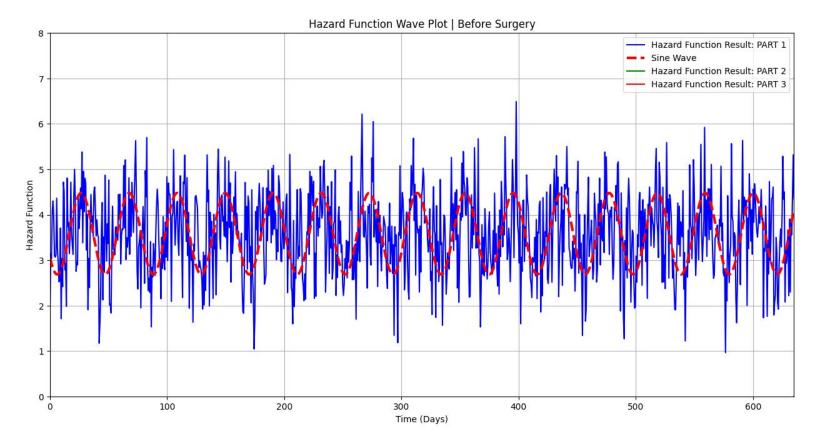
- Enhance data collection
 - Facilitate robust analysis and reduce potential biases
- Compare time dependent features
 - Aim to study different epilepsy (idiopathic) types
- Generalize machine learning model
 - Develop model to accurately predict future seizures
- Examine data on a widespread scale
 - Validate consistency with linear stationary Gaussian process

Conclusions

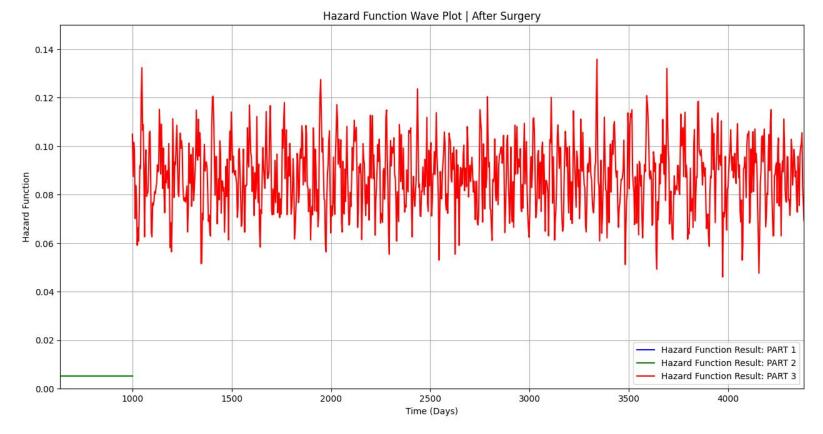
- Pre- and post- brain surgery time series had different degrees of time dependence
 - Neither time series is iid
 - Time dependence in post-op data quite consistent with that of a linear stationary Gaussian process (such as an ARMA model). Less forecastable than pre-op data
 - Pre-op data responds much better to preprocessing methods across the board, particularly sins of differences
- Hazard function analysis detects differences between pre- and post-op data
 - Seizure risk decreased by days after brain surgery

- Classical time series forecasting methods seem to outperform machine learning methods
 - ARIMA model with one autoregressive parameter, one difference to stationarity, and one lagged forecast error modelled seizure counts. ARIMA model cannot be extrapolated much for future prediction
 - LSTMs exhibited tendency to overfit the data

Thank you!



Final Approach Visual Results: PRE-SURGERY



Final Approach Visual Results: POST-SURGERY